Albahari Integrals

Integrals (Euler's Formula)

I1=0estcos(at)dt=(I3)I2=0estsin(at)dt=(I3)I3=I1+iI2=0e(sia)tdt=ss2+a2+ias2+a2\begin{aligned} I_1 &=\int_0^\infty e^{-st}\cos(at)dt=\Re(I_3) \\ I_2 &=\int_0^\infty e^{-st}\sin(at)dt=\Im(I_3) \\ I_3 &= I_1+i I_2=\int_0^\infty e^{-(s-ia)t}dt=\frac{s}{s^2+a^2}+i\frac{a}{s^2+a^2} \end{aligned} J1=01etxcos(2πnx)dx=(J3)J2=01etxsin(2πnx)dx=(J3)J3=01ex(t2πin)dx=t(1et)t2+(2πn)2+i2πn(1et)t2+(2πn)2\begin{aligned} J_1 &=\int_0^1 e^{-tx} \cos(2\pi nx)dx=\Re(J_3) \\ J_2 &=\int_0^1 e^{-tx} \sin(2\pi nx)dx=\Im(J_3) \\ J_3 &=\int_0^1 e^{-x(t-2\pi in)} dx=\frac{t(1-e^{-t})}{t^2+(2\pi n)^2} +i\frac{2\pi n(1-e^{-t})}{t^2+(2\pi n)^2} \end{aligned}
CC BY-SA 4.0 Miguel Bustamante. Last modified: August 08, 2023. Website built with Franklin.jl and the Julia programming language.