Tensors, Part I

In this post I will be going through index notation, the basic properties of tensors and two crucial functions that will allow us to greatly simplify calculations and express quantities in a concise manner. The index represenation of a tensor consists in

Kronecker's Delta

δij={1,if i=j0,if ij \delta_{ij}= \begin{cases} 1, & \text{if } i=j \\ 0, & \text{if } i\neq j \end{cases}

It has the important property of index substitution

aiδij=aj a_i \delta_{ij} =a_j

when the summation runs over all ii's. We can also play with higher-order tensors and several Kronecker symbols.

bijkδjpδkq=bipqcijklδjpδpq=ciqkl b_{ijk} \delta_{jp}\delta_{kq}=b_{ipq} \\ c_{ijkl} \delta_{jp} \delta_{pq} = c_{iqkl}

From the definition it is also clear that it satisfies a symmetry property and a dimensional property, since a Kronecker delta is defined to act on a particular space of dimension nn, generally equal to 33.

δij=δjiδijδji=δii=n \delta_{ij}=\delta_{ji} \\ \delta_{ij} \delta_{ji}=\delta_{ii}=n

When dealing with the canonical basis in Rn\mathbb R^n, inner products among basis vectors coincide with the Kronecker delta

ei,ej=δij \langle e_i,e_j \rangle=\delta_{ij}

Levi-Civita Symbol

εijk={1,if i,j,k are different and in cyclic order1,if i,j,k are different not in cyclic order0,if at least two of i,j,k are equal \varepsilon_{ijk}= \begin{cases} 1, & \text{if $i,j,k$ are different and in cyclic order} \\ -1, & \text{if $i,j,k$ are different not in cyclic order} \\ 0, & \text{if at least two of $i,j,k$ are equal} \end{cases}

Vector Algebra computations

u,v=uiei,vjej=uivjei,ej=uivjδij=uivi \langle u,v \rangle=\langle u_i e_i, v_j e_j \rangle=u_i v_j \langle e_i,e_j \rangle=u_i v_j \delta_{ij}=u_i v_i
CC BY-SA 4.0 Miguel Bustamante. Last modified: August 08, 2023. Website built with Franklin.jl and the Julia programming language.